

GREEN: Genomic Regulatory Elements ENcyclopedia

Welcome to the house of GREEN-DB and GREEN-VARAN!
This documentation describes the resources part of the Genomic Regulatory Elements Encyclopedia

The GREEN project is made by 3 main components:

1. The GREEN-DB collection

The collection includes information useful for the annotation of non-coding variants in regulatory regions

	a database (GREEN-DB) containing ~2.4M regulatory regions in the human genome with information on controlled gene(s) and tissue(s) of activity

	pre-processed indexed BED files representing functional genomic signals (TFBS, DNase peaks, UCNE, TADs)

	pre-processed indexed tables for 12 non-coding variant impact prediction scores and PhyloP100 conservation

The GREEN-DB files can be downloaded from Zenodo: https://zenodo.org/record/5636209
All the additional pre-preprocessed datasets are also available from Zenodo, see the Download section.

2. The GREEN-VARAN tool set

This include tools and workflows that can be used to interact with information in the GREEN-DB and annotate VCF files

	annotate small variants or structural variants with regulatory impact information, including possibly controlled genes

	add additional annotations on functional elements and non-coding prediction scores

	prioritize small variants for possible regulatory impact

	given a list of variants or regions, query the GREEN-DB for detailed information

Available from GitHub: https://github.com/edg1983/GREEN-VARAN

3. The prioritization workflow

A Nextflow workflow is available to automate download of the GREEN-DB and supporting resources
and run the prioritization workflow on a VCF file. This workflow can be run on one or multiple VCF file(s)
and will automatically annotated the desired scores and regions and then perform GREEN-VARAN annotation.

How to cite

If you find GREEN-DB and GREEN-VARAN useful for your research please cite our manuscript (https://academic.oup.com/nar/article/50/5/2522/6541021)
See also the how to cite section

The Download section lists locations to download the GREEN-DB and other resource files for annotation

Contents:

	The GREEN-DB
	Database region content

	Summary statistics on the database

	SQLite database structure

	The constraint metric

	Summary of the building process

	Extract database tables

	GREEN-VARAN tool set
	Installation

	Get GREEN-DB files

	GREEN-VARAN Nextflow workflow

	Singularity

	Single tools usage

	GREEN-VARAN workflow
	Usage

	Resources

	Automated download

	Workflow configuration

	Available parameters for main workflow

	Download resources
	greenvaran tool

	greendb_query tool

	GREEN-VARAN workflow

	How to cite
	GREEN-DB

	GREEN-VARAN

	Population AF

Indices and tables

	Index

	Module Index

	Search Page

The GREEN-DB

GREEN-DB is a comprehensive collection of potential regulatory regions in the human genome
including ~2.4M regions from 16 data sources and covering ~1.5Gb evenly distributed across chromosomes.
The regulatory regions are grouped in 5 categories: enhancer, promoter, silencer, bivalent, insulator.

Each region is described by its genomic location, region type, method(s) of detection, data source and closest gene;
~35% of regions are annotated with controlled genes, ~40% with tissue(s) of activity, and ~14% have associated phenotype(s).
GREEN-DB is available as an SQLite database and regions information with controlled genes are also provided as
extended BED files for easy integration into existing analysis pipelines.

For details on how the database was compiled please refer to the original publication
https://doi.org/10.1101/2020.09.17.301960

The GREEN-DB database is available for free for academic use and available for download
in a Zenodo repository [https://zenodo.org/record/5636209].
The full database is available as SQLite and a summary of region-based information is provided in BED files.

Database region content

GRCh38

	GREEN-DB

	N

	Bases covered

	N Enhancer

	1832830

	1449153178

	N Promoter

	565323

	234315553

	N Silencer

	4302

	894792

	N Bivalent

	8409

	11210309

	N Insulator

	23

	17504

	All regions

	2410887

	1502180018

GRCh37

	GREEN-DB

	N

	Bases covered

	N Enhancer

	1834183

	1450755698

	N Promoter

	566102

	234890654

	N Silencer

	4306

	895868

	N Bivalent

	8413

	11215000

	N Insulator

	23

	17504

	All regions

	2413027

	1504116499

Summary statistics on the database

[image: Summary of the database]

Main information in the database

[image: Gene-region connections]

Summary information on gene-region connections

SQLite database structure

The SQLite database contains 16 tables (expected columns are listed in the image):

	
	GRCh37 / GRCh38 regions

	GREEN-DB regions coordinate; region type; constraint percentile; closest gene symbol, Ensembl ID and distance; PhyloP100 statistics

	
	Tissues

	tissue(s) of activity for a region or a region-gene interaction

	
	Genes

	controlled gene(s)

	
	Methods

	method(s) supporting each region and region-gene interaction. This may correspond to the data source when no specific method information was available.

	
	Phenotypes

	potentially associated phenotypes

	
	GRCh37 / GRCh38 TFBS

	transcription factor binding sites

	
	GRCh37 / GRCh38 DNase

	DNase hypersensitivity peaks

	
	GRCh37 / GRCh38 dbSuper

	super-enhancers as defined by dbSuper

	
	GRCh37 / GRCh38 LoF_tolerance

	the probability of LoF tolerance for enhancers

	
	GRCh37 / GRCh38 UCNE

	ultraconserved noncoding elements

	
	GRCh37 / GRCh38 TAD

	TAD domains from TADKB

Main tables (regions, tissues, genes and methods) are linked by the unique region ID.
Additionally, a unique interaction ID identifies each gene-region pair in the gene table and it’s linked to methods and tissues tables.
Linking tables are included that map the overlap between GREEN-DB region IDs and each of TFBS, DNase, dbSuper and LoF_tolerance region IDs, reporting also the fraction of overlap.

[image: SQlite DB structure]

A schematic representation of GREEN-DB.

The constraint metric

For each region we calculated a contraint metric representing the tolerance to genetic variations.
Constraint ranges 0-1 with higher values associated to higher level of variation constraint.
Regions with high constraint values (especially > 0.9) are more likely to control essential genes and genes involved in human diseases.
The constraint value is also higher for genes intolerant to LoF variants according to the gnomAD oe_lof metric

[image: Constraint metric distribution]

Constraint values for regions associated to essential/pathogenic genes

Summary of the building process

In GREEN-DB we collected and aggregated information from 17 different sources, including

	8 previously published curated databases

	6 experimental datasets from recently published articles

	predicted regulatory regions from 3 different algorithms

Four additional datasets were included to integrate region to gene / phenotype relationships.
We also collected additional data useful in evaluating the regulatory role of genomic regions, including
- TFBS and DNase peaks
- ultraconserved non-coding elements (UCNE)
- super-enhancer definitions
- enhancer LoF tolerance

[image: Build the database]

Summary of the GREEN-DB building process

Extract database tables

Using bash

You can extract all tables of the database to tab-separated tables using a bash script.
In the following example the db file is provided as argument and all tables are saved as
.tsv files in the present folder

dbfile=$1

obtains all data tables from database
TS=`sqlite3 $1 "SELECT tbl_name FROM sqlite_master WHERE type='table' and tbl_name not like 'sqlite_%';"`

exports each table to tsv
for T in $TS; do
sqlite3 $1 <<!
.headers on
.mode tabs
.output $T.tsv
select * from $T;
!
done

Using R

You can extract tables from the database in R using the RSQLite package.
In the example below we extract all tables to data frames in a named list (dbtables)

library("RSQLite")

connect to the SQLite database
 con <- dbConnect(drv=RSQLite::SQLite(), dbname="SQlite/RegulatoryRegions.db")

list all data tables
 tables <- dbListTables(con)

create a data.frame for each table
 for (i in seq(along=tables)) {
 dbtables[[tables[i]]] <- dbGetQuery(conn=con, statement=paste("SELECT * FROM '", tables[[i]], "'", sep=""))
 }

GREEN-VARAN tool set

Genomic Regulatory Elements ENcyclopedia VARiant ANnotation

Annotate variants in a VCF using GREEN-DB to provide information on non-coding regualtory variants and the controlled genes.
Additionally perform prioritization summing up evidences of regulatory impact from GREENDB, population AF, functional regions and prediction scores

Installation

1. Get the tool binary from the repository

The easiest way to run GREEN-VARAN is to download the pre-compiled binaries from the latest release at https://github.com/edg1983/GREEN-VARAN

2. Compile the tool

Alternatively, you can clone the repository
git clone https://github.com/edg1983/GREEN-VARAN.git

And then compile the greenvaran using Nim compiler (https://nim-lang.org/).
GREEN-VARAN requires
- nim >= 0.10
- hts-nim >= 0.3.4
- argparse 0.10.1

If you have Singularity installed, you can use the script nim_compile.sh to create a static binary with no dependencies
This uses musl-hts-nim as described in hts-nim repository (see https://github.com/brentp/hts-nim#static-binary-with-singularity)

Get GREEN-DB files

To perform annotations with GREEN-VARAN you will need the GREEN-DB bed files for your genome build.
You can download the GREEN-DB BED file for GRCh37 or GRCh38 from https://zenodo.org/record/5636209

The complete SQLite database is also available from the same repository

GREEN-VARAN Nextflow workflow

We also provide a Nextflow workflow that can be used to automate VCF annotation and resource download.
Given a small variants VCF annotated for gene consequences using snpEff or bcftools the workflow can be used to
- automatically add functional regions annotations and non-coding prediction scores
- perform greenvaran prioritization

Missing datasets will be downloaded automatically during the process.
See the dedicated page for more usage information

Singularity

The tool binaries should work on most linux based system. In case you have any issue, we also provdie GREEN-VARAN as Singularity image (tested on singularity >= 3.2).
A Singularity recipe is included in the repository or you can pull the image from Singularity Library using

singularity pull library://edg1983/greenvaran/greenvaran:latest

See GREEN-VARAN usage for more details
Usage
#####

The image contains both greenvaran and greendb_query tools.
The general usage is:

singularity run \
greenvaran.sif \
tool_name [tool arguments]

Bind specific folders for resources or data

The tool need access to input VCF file, required GREEN-DB bed file and config files so remember to bind the corresponding locations in the container

See the following example where we use the current working directory for input/output, while other files are located
in the default config / resources folder within greenvaran folder. In the example we use GRCh38 genome build

singularity run \
--bind /greenvaran_path/resources/GRCh38:/db_files \
--bind /greenvaran_path/config:/config_files \
--bind ${PWD}:/data \
greenvaran.sif \
greenvaran -i /data/input.vcf.gz \
-o /data/output.vcf.gz \
--db /db_files/GRCh38_GREEN-DB.bed.gz \
--dbschema /config_files/greendb_schema_v2.5.json
--config /config_files/prioritize_smallvars.json
[additional tool arguments]

Single tools usage

The GREEN-VARAN tool set includes 2 main tools to annotate variants and interact with GREEN-DB.

	greenvaran
Perform annotation on small variants or structural variants VCF.
Provides prioritization of regulatory variants summing up evidences of impact from GREENDB, population AF, functional regions and prediction scores.
Variants can also be tagged based on a list of genes of interest.
Finally, the tool can update standard gene consequence in ANN or BCQS fields to reflect regulated genes.

	greendb_query
Assists in quering the GREEN-DB. Given a list of region IDs, a list of variants or a table of variants and relevant GREENDB regions
the tool generates a set of tables containing detailed information on the regions of interest, region-gene connections, functional regions and tissues.

For detailed instruction on the single tools usage please refer to the corresponding page

	GREEN-VARAN tool usage
	Basic usage

	Command line options

	Annotations added by GREEN-VARAN

	Prioritization of small variants

	structural variants annotations

	Singularity

	Example usage

	greendb_query tool usage
	Possible inputs

	Output tables

	Arguments list

	GREEN-VARAN workflow
	Usage

	Resources

	Automated download

	Workflow configuration

	Available parameters for main workflow

GREEN-VARAN tool usage

GREEN-VARAN performs annotation of small variants or structural variants VCF adding information on potential regulatory variants from GREEN-DB.
Especially it can annotate possible controlled genes and a prioritization level (this latter need the presence of some additional annotations, see below)
It provides also abiliy to tag variants linked to genes of interest and update existing gene-level annotations from SnpEff or bcftools.

Basic usage

greenvaran [run mode] [options]

The running mode can be one of:

	smallvars
In this mode the tool will perform annotation for a small variants VCF.
It will annotate variants with information on the possible regulatory role based on GREENDB and eventually provide prioritization levels

	sv
In this mode the tool will perform annotation for a structural variants VCF.
Capability in this case is limited to annotation of overlapping GREENDB regions and controlled genes. No prioritization is provided

	querytab
This mode is a convenient way to automatically prepare input table to be used with the query tool to exctract detailed information from GREENDB database.

	version
Print the tool version

NB. To perform prioritization of small variants some additional annotation fields are expected in the input VCF, see the prioritization section below.
By default, when these information are not present the prioritization level will be set to zero for all annotated variants.
We also provide pre-processed datasets and Nextflow workflow to automate the whole process (see #TODO nextflow workflow page).

Command line options

smallvars and sv shared options

	-i, --invcf INVCF

	
path to indexed input vcf.gz/bcf.

	-o, --outvcf OUTVCF

	
output vcf / vcf.gz file

	-d, --db DB

	
GREEN-DB bed.gz file for your build (see download section)

	-s, --dbschema DBSCHEMA

	
json file containig greendb column mapping

A default configuration for GREENDB v2.5 is available in config folder

	-u, --noupdate

	
do not update ANN / BCSQ field in the input VCF

	-f, --filter

	
filter instead of annotate. Only variants with greendb overlap will be written.

If –genes is active, the output will contain only variants connected to the input genes of interest

	-m, --impact IMPACT

	
Which impact to assign when updating snpEff field

Possible values: [HIGH, MODERATE, LOW, MODIFIER] (default: MODIFIER)

	--chrom CHROM

	
Annotate only for a specific chromosome

Useful to parallelize across chromosomes

	-g, --genes GENES

	
Gene symbols for genes of interest, variants connected to those will be flagged with greendb_VOI tag

This can be a comma-separated list or a text file listing genes one per line

	--connection CONNECTION

	
Region-gene connections accepted for annotation

Possible values: [all, closest, annotated] (default: all)

	--log LOG

	
Log file. Default is greenvaran_[now].log

sv specific options

	-p, --padding PADDING

	
Value to add on each side of BND/INS, this override the CIPOS when set

	--cipos CIPOS

	
INFO field listing the confidence interval around breakpoints

It is expected to have 2 comma-separated values (default: CIPOS)

	-t, --minoverlap MINOVERLAP

	
Min fraction of GREENDB region to be overlapped by a SV (default: 0.000001)

	-b, --minbp MINBP

	
Min number of bases of GREENDB region to be overlapped by a SV (default: 1)

smallvars specific options

	-c, --config CONFIG

	
json config file for prioritization

A default configuration for the four level described in the paper is provided in config folder

	-p, --permissive

	
Perform prioritization even if one of the INFO fields required by prioritization config is missing

By default, when one of the expeced fields is not defined in the header, the prioritization is disabled and all variants will get level zero

Annotations added by GREEN-VARAN

INFO fields

Fields in the following table are added to INFO fields by GREEN-VARAN. greendb_level will be added only for small variants

	Annotation tag

	Data type

	Description

	greendb_id

	String

	Comma-separated list of GREEN-DB IDs identifying the regions that overlap this variant

	greendb_stdtype

	String

	Comma-separated list of standard region types as annotated in GREEN-DB for regions overlapping the variant

	greendb_dbsource

	String

	Comma-separated list of data sources as annotated in GREEN-DB for regions overlapping the variant

	greendb_level

	Integer

	Variant prioritization level computed by GREEN-VARAN. See Prioritization section below

	greendb_constraint

	Float

	The maximum constraint value across GREEN-DB regions overlapping the variant

	greendb_genes

	String

	Possibly controlled genes for regulatory regions overlapping this variant

	greendb_VOI

	Flag

	When --genes option is active this flag is set when any of the input genes is among the possibly controlled genes for overlapping regulatory regions.

Updated gene consequences

By default, GREEN-VARAN update gene consequences in the SnpEff ANN field or the bcftools BCSQ if one is present in the input VCF file.
In this way the annotation can be processed by most downstream tools evaluating segregation.
If none is found, GREEN-VARAN will create a new ANN field. To switch off gene consequence update use the --noupdate option.

Here the tool will add one a new consequence for each possibly controlled genes, limited by the --connection option.
The new consequence will follow standard format according to SnpEff or bcftools and have MODIFIER impact by default.
This can be adjusted using the --impact option.
The gene effect will be set according to the GREEN-DB region type, adding 5 new terms: bivalent, enhancer, insulator, promoter, silencer.

Example ANN / BCSQ field added by GREEN-VARAN.

ANN=C|enhancer|MODIFIER|GeneA||||||||||||
BCQS=enhancer|GeneA||

Prioritization of small variants

GREEN-VARAN will consider GREEN-DB annotations, additional functional regions and non-coding impact prediction scores to provide a prioritization level for each annotated variant.
This level is annotated under greenvara_level tag in the INFO field.
This fields is an integer from 0 to N wich summarize evidences supporting a regulatory impact for the variant.
Higher values are associated to a higher probability of regulatory impact.

NB. You need teh following INFO fields in your input VCF to run priotization mode as described in the GREEN-DB manuscript
using the default config provided.

	gnomAD_AF, gnomAD_AF_nfe float values describing global and NFE population AF from gnomAD

	ncER, FATHMM-MKL and ReMM float values providing scores predictions

	TFBS, DNase and UCNE flags describing overlap with additional functional regions

This configuration resembles the four levels prioritization described in the GREEN-DB manuscript.
Note that the exact names of these annotations and the score thresholds are defined in the json file passed to –config options.

The following table summarizes the four prioritization levels defined in the manuscript and this is the default behaviour
you will obtain using the default config file and the default option –priritization_strategy levels

	Level

	Description

	1

	Rare variant (population AF < 1%) overlapping one of GREEN-DB regions

	2

	Level 1 criteria and overlap at least one functional element among transcription factors binding sites (TFBS), DNase peaks, ultra conserved elements (UCNE)

	3

	Level 2 criteria and prediction score value above the suggested FDR50 threshold for at least one among ncER, FATHMM MKL, ReMM

	4

	Level 3 critera and region constraint value greater or equal 0.7

Alternatively, you can chose a “pile-up” approach setting –priritization_strategy pileup which simply sum evidences across levels.

This means that the criteria described above are tested independently and the level reported is increased by one for each satisfied criteria.

Personalize the prioritization schema

The prioritization schema is defined in a config json file. The default is provided in the config folder.
An example of expected file structure is reported below

{
 "af": ["gnomAD_AF","gnomAD_AF_nfe"],
 "maxaf": 0.01,
 "regions": ["TFBS", "DNase", "UCNE"],
 "scores": {
 "FATHMM_MKLNC": 0.908,
 "ncER": 98.6,
 "ReMM": 0.963
 },
 "constraint": 0.7,
 "more_regions": [],
 "more_values": {}
}

Sections definitions:

	af: INFO fields containing AF annotations. The tool will consider the max value across all these

	maxaf: if the max value across af fields is below this, the variant get +1 point

	regions: INFO fields for overlapping regions. If any of these is set, the variant get +1 point

	scores: series of key, value pairs. If any of key value is above the configured value, the variant get +1 point

	constraint: if the max constraint value across overlapping GREEN-DB regions is above this value, the variant get +1 point

	more_regions: any additional INFO fields representing overlap with custom regions. The variant get +1 point for each positive overlap

	more_values: series of key, value pairs. The variant get +1 point fro each key value above the configured value

NB. more_regions and more_values must always been present. Leave them empty like in the example above if you don’t want to configure any custom value.

NB2. INFO fields specified by af, scores and more_values are expected to be float, while those specified by regions and more_regions are expected as flags.

structural variants annotations

The annotation of structural variants is based on overlap with the regulatory regions defined in GREEN-DB.
This is treated differently according to the SV type:

	For DEL, DUP, INV an interval is constructed based on position field and the END info field from INFO.
When END is missing, the tool will try to use SVLEN instead. If none is not found the variant is not annotated
The user can then set a minimum level of overlap as either overlap fraction (--minoverlap) or N bp overlap (--minbp).
A GREEN-DB region is added to annotation only if its overlapping porting is larger or equal to both threshold

	For INS and BND, an interval is constructed using the position and the coordinates in the CIPOS field (an alternative field can be set using --cipos).
This is done since INS and BND are often represented as single positions in structural variants VCF.
Alternatively, the user can provide a padding values using --padding and this value will be added aroud position
For these kind of variants any overlapping GREEN-DB region will be reported, diregarding the overlap threasholds

Singularity

The tool binaries should work on most linux based system. In case you have any issue, we also provdie GREEN-VARAN as Singularity image (tested on singularity >= 3.2).
A Singularity recipe is included in the repository or you can pull the image from Singularity Library using

singularity pull library://edg1983/greenvaran/greenvaran:latest

Usage

The image contains both greenvaran and greendb_query tools.
The general usage is:

singularity exec \
greenvaran.sif \
tool_name [tool arguments]

Bind specific folders for resources or data

The tool needs access to input VCF file, required GREEN-DB bed file and config files so remember to bind the corresponding locations in the container

See the following example where we use the current working directory for input/output, while other files are located
in the default config / resources folder within greenvaran folder. In the example we use GRCh38 genome build

singularity exec \
--bind /greenvaran_path/resources/GRCh38:/db_files \
--bind /greenvaran_path/config:/config_files \
--bind ${PWD}:/data \
greenvaran.sif \
greenvaran -i /data/input.vcf.gz \
-o /data/output.vcf.gz \
--db /db_files/GRCh38_GREEN-DB.bed.gz \
--dbschema /config_files/greendb_schema_v2.5.json \
--config /config_files/prioritize_smallvars.json
[additional tool arguments]

Example usage

small variants test

greenvaran smallvars \
--invcf test/VCF/GRCh38.test.smallvars.vcf.gz \
--outvcf test/out/smallvars.annotated.vcf.gz \
--config config/prioritize_smallvars.json \
--dbschema config/greendb_schema_v2.5.json \
--db resources/GRCh38/GRCh38_GREEN-DB.bed.gz \
--genes test/VCF/genes_list_example.txt

structural variants test

greenvaran sv \
--invcf test/VCF/GRCh38.test.SV.vcf.gz \
--outvcf test/out/SV.annotated.vcf.gz \
--dbschema config/greendb_schema_v2.5.json \
--db resources/GRCh38/GRCh38_GREEN-DB.bed.gz \
--minbp 10

greendb_query tool usage

greendb_query assists in quering the GREEN-DB database.
Given a list of region IDs, variant IDs or a table or variant and relevant regions, the tool generates a set of tables
containing detailed information on the regions of interest, overlap with additional supporting regions
(TFBS, DNase HS peaks, UCNE, dbSuper), gene-region connections, tissue of activity and associated phenotypes.

greendb_query [-h] (-v VARIDS | -r REGIDS | -t TABLE) -o OUTPREFIX -g
 {GRCh37,GRCh38} --db GREENDB [--logfile LOGFILE]

Possible inputs

The tools allows to query GREEN-DB using 3 different type of inputs.
Only one type of input can be specified.

1. List of regions (-r)

If you are simply interested in detailed information on a list of regions, you can use the -r input.
This argument accepts a comma-separated list of regions (like ID1,ID2) or a text file with one region ID per line.

2. VCF file (-v)

If you have a small list of variants for which you want to extract overalpping regulatory regions, you can
input a them as a comma-separated list of variant IDs (like var1,var2) or a text file with one variant ID per line
A variant ID has the format chrom_pos_ref_alt

3. Variant-regions table (-t)

If you have a list of variants of interest for which you know the relevant GREEN-DB region IDs
you can query the DB directly providing a tab separated text file with no header and 2 columns:

	column 1: variant ID in the format chrom_pos_ref_alt

	column 2: comma-separated list of region IDs overlapping the variant

This table can be generated automatically from a VCF annotated with greenvaran by using greenvaran querytab

Output tables

The tool will generate 6 tables with the provided prefix. Some table may be empty if the corresponding information is missing.
Output tables structure is described below

regions

Details on the regions of interest

1. regionID: GREEN-DB region ID

2-4. chrom, start, stop: genomic location of the region

5. type: region type as extracted from the source dataset

6. std_type: one of the 5 main region types (enhancer, promoter, silencer, bivalent, insulator)

7. DB_source: comma-separated list of sources supporting the region

8. PhyloP100_median: median PhyloP100 conservation value across the region

9. constraint_pct: constraint metric. range 0-1 with higher values equals more intolerant to variants

10. controlled_gene: comma-separated list of gene symbols for controlled genes with experimental support

11-13. closestGene_symbol, _ensg, _dist: symbol, ensembl IDs and distance for the closeset gene

14. cell_or_tissues: comma-seprated list of cell types and tissues where the region is active

15. detection_method: comma-separated list of methods supporting this regions

16. phenotype: comma-separated list of phenotypes eventually associated to this region

gene_details

Details on the controlled genes, reporting the tissue where the gene-region interaction is detected

1. regionID: GREEN-DB region ID

2-4. chrom, start, stop: genomic location of the region

5. std_type: one of the 5 main region types (enhancer, promoter, silencer, bivalent, insulator)

6. controlled_gene: gene symbol for controlled gene

7. detection method: method supporting this interaction

8. tissue_of_interaction: comma-separated list of cell types and tissues where this region-gene interaction is detected

9. same_TAD: 0/1 value indicating if the reported interaction occurs in the same TAD according to TADKB

pheno_details

Details on the phenotypes potentially associated with the regions of interest

1. regionID: GREEN-DB region ID

2-4. chrom, start, stop: genomic location of the region

5. std_type: one of the 5 main region types (enhancer, promoter, silencer, bivalent, insulator)

6. phenotype: phenotype eventually associated to this region

7. detection method: method supporting this association. Note that when the method is GENE2HPO this means that the phenotype is inferred from HPOs associated to the controlled gene(s)

8. DB source: source supporting this association

DNase, dbSuper, TFBS, UCNE

For each of the 4 functional elements a table is generated with details on each element overlapping the region(s) / variant(s) of interest.

1. regionID: GREEN-DB region ID

2-4. dataset_chrom, _start, _stop: genomic location of the functional element

5. dataset_ID: database ID of the functional element

6. dataset_cell_or_tissue: comma-separated list of cell types and tissues where the element is detected

cell and tissue information is not available for UCNE

Variant(s) of interest

When the input contains variants of interest (-t, -v), an additional column is added to all tables.
A region or element is reported in the output only if it overlaps with one of the variants.

var_id: comma-separated list of variant ID(s) (chrom_pos_ref_alt) of the variant(s) overlapping this feature

Arguments list

	-v VARID, --vcf VARID

	
Comma separated list of variant IDs or file with a list of variant IDs

	-r REGIDS, --regIDs REGIDS

	
Comma separated list of region IDs or file with a list of region IDs

	-t TABLE, --table TABLE

	
Tab-separated file with

col1 (chr_pos_ref_alt)

col2 comma-separated list of region IDs

	-o OUTPREFIX, --outprefix OUTPREFIX

	Prefix for output files

	-g BUILD, --genome BUILD

	
Possible values: {GRCh37,GRCh38}

Genome build for the query

	--db GREENDB

	
Location of the GREEN-DB SQLite database file (.db)

	--logfile LOGFILE

	
Custom location for the log file

GREEN-VARAN workflow

To perform small variants prioritization as described in the GREEN-DB manuscript, GREEN-VARAN need some annotations to be already
present in your input VCF (see Prioritization of small variants)

This Nextflow workflow automate the whole process annotating additional information and then performing greenevaran annotation.
The workflow is tested on Nextflow >=v20.10

Usage

The typical usage scenario start with a VCF file already containing gene consequences annotations from SnpEff or bcftools.
Then from the GREEN-VARAN tool main folder you can perform all annotations using the following command.
This will add a minimum set of information to you VCF including:

	population allele AF from gnomAD genomes v3.1.1 (GRCh38) or v2.1.1 (GRCh37)

	functional regions overlaps for TFBS, DNase peaks and UCNE

	prediction score values for ncER, FATHMM, ReMM

	GREEN-DB information on regulatory variants with prioritization levels

nextflow workflow/main.nf \
 -profile local \
 --input input_file.vcf.gz \
 --build GRCh38 \
 --out results \
 --scores best \
 --regions best \
 --AF \
 --greenvaran_config config/prioritize_smallvars.json \
 --greenvaran_dbschema config/greendb_schema_v2.5.json

If requested annotation files are missing, they will be automatically downloaded in the default location (resources folder within the main GREEN-VARAN folder)

Note that --input can accept multiple vcf.gz files using a pattern like inputdir/*.vcf.gz

Add additional custom annotations

If you have additional custom annotation you want to add to your VCF before greenvaran processing they can be configured in a .toml
and then you can pass this file to the workflow using --anno_toml.

A toml file is a annotation configuration file used by the vcfanno tool and is described in `vcfanno repository<https://github.com/brentp/vcfanno>`_

A minimal example is reported below

[[annotation]]
file="ExAC.vcf" #source file
fields = ["AF", "AF_nfe"] #INFO fields to be extracted from source
ops=["self", "max"] #How to treat source values
names=["exac_af", "exac_af_nfe_max"] #names used in the annotated file

[[annotation]]
file="regions_score.bed.gz"
columns = [4, 5] #When using a BED or TSV files you can refer to values by col index
names=["regions_ids", "score_max"]
ops=["uniq","max"]

Resources

To perform annotations GREEN-VARAN Nextflow workflow requires a series of supporting files.
By default, various resources are expected in the resources folder within the main tool folder.
You pass an alternative resource folder using --resource_folder option, bug the same structure is expected in this folder

The expected folder structure is as follows

.
|-- SQlite
| `-- GREEN-DB_v2.5.db
|-- GRCh37
| `-- BED / TSV files used for GRCh37 genome build
`-- GRCh38
 `-- BED / TSV files used for GRCh38 genome build

Use the --list_data option to see the full list of available resources and the expected path for each one.

Automated download

A supporting workflow is provided to automate data download for all resources included in the GREEN-DB collection.
You can list the available resources and their resulting download location using

nextflow workflow/download.nf --list_data

The reccomended set of annotations can be downloaded to the default location using the following command or
you can set an alternative resource folder using --resource_folder option

nextflow workflow/download.nf \
-profile local \
--scores best \
--regions best \
--AF \
--db

Otherwise, single files are available for download from Zenodo repository and all file locations are listed in
the GREENDB_collection.txt file under resources folder.

Workflow configuration

The workflow has pre-configured profiles for most popular schedulers (sge, lsf, slurm) and also a local profile (local).
These profiles determine how many download jobs can be submitted concurrently and the number of threads used for annotation.

You can activate the desired profile using -profile argument when launching the workflow

NB. You need to update the queue name parameter to reflect your local settings, see how to edit the config below

The default settings for each profile are reported below:

Editing the profile configuration

To adjust the configuration you need to edit the nextflow.config file in the workflow folder

The main parameters you may need to adjust are
- ncpus: this controls the number of threads request for annotation
- max_local_jobs: this controls the max number of concurrent jobs submitted in local profile (when not submitting job to a scheduler)
- queue: this is the name of the queue to be used when submitting jobs

Editing the annotation file schema

The annotation file schema contain the expected files names, repositories and annotation sources.
In case you need to adjust this you can modify the resources.conf file located in workflow/config in the GREEN-VARAN folder.

Available parameters for main workflow

	--input INPUT_VCF

	
Input VCF file(s), compressed and indexed

You can input multiple files from a folder using quotes like --input mypath/*.vcf.gz

	--build GENOME_BUILD

	
Genome build

Accepted values: [GRCh37, GRCh38]

	--out output_dir

	
Output directory

	--scores SCORE_NAME

	
Annotate prediction scores

Accepted values: [best, all, name]

best: annotate ncER, FATHMM-MKL, ReMM

all: annotate all scores

name: annotate only the specified score(s) (can be comma-separated list)

	--regions REGIONS_NAME

	
Annotate functional regions

Accepted values: [best, all, name]

best: annotate TFBS, DNase, UCNE

all: annotate all regions

name: annotate only the specified region(s) (can be comma-separated list)

	--AF

	
Annotate global AF from gnomAD genomes

	--greenvaran_config JSON_FILE

	
A json config file for GREEN-VARAN tool

	--greenvaran_dbschema JSON_FILE

	
A json db schema file for GREEN-VARAN tool

	--nochr

	
Chromosome names in the input file do not have chr prefix

	--prioritization_strategy

	
Set prioritization strategy [levels, pileup]

	--resource_folder

	
Specify a custom folder for the annotation files

Default is the resources folder in GREEN-VARAN main folder

	--anno_tom TOML_FILE

	
A custom toml annotation config file.

This file is a toml file as specified by vcfanno tool

This will be added to other annotations defined with scores, regions and AF.

	--list_data

	
Output the list of available scores / regions and the expected paths

GREEN-VARAN workflow

To perform small variants prioritization as described in the GREEN-DB manuscript, GREEN-VARAN need some annotations to be already
present in your input VCF (see Prioritization of small variants)

This Nextflow workflow automate the whole process annotating additional information and then performing greenevaran annotation.
The workflow is tested on Nextflow >=v20.10

Usage

The typical usage scenario start with a VCF file already containing gene consequences annotations from SnpEff or bcftools.
Then from the GREEN-VARAN tool main folder you can perform all annotations using the following command.
This will add a minimum set of information to you VCF including:

	population allele AF from gnomAD genomes v3.1.1 (GRCh38) or v2.1.1 (GRCh37)

	functional regions overlaps for TFBS, DNase peaks and UCNE

	prediction score values for ncER, FATHMM, ReMM

	GREEN-DB information on regulatory variants with prioritization levels

nextflow workflow/main.nf \
 -profile local \
 --input input_file.vcf.gz \
 --build GRCh38 \
 --out results \
 --scores best \
 --regions best \
 --AF \
 --greenvaran_config config/prioritize_smallvars.json \
 --greenvaran_dbschema config/greendb_schema_v2.5.json

If requested annotation files are missing, they will be automatically downloaded in the default location (resources folder within the main GREEN-VARAN folder)

Note that --input can accept multiple vcf.gz files using a pattern like inputdir/*.vcf.gz

Add additional custom annotations

If you have additional custom annotation you want to add to your VCF before greenvaran processing they can be configured in a .toml
and then you can pass this file to the workflow using --anno_toml.

A toml file is a annotation configuration file used by the vcfanno tool and is described in `vcfanno repository<https://github.com/brentp/vcfanno>`_

A minimal example is reported below

[[annotation]]
file="ExAC.vcf" #source file
fields = ["AF", "AF_nfe"] #INFO fields to be extracted from source
ops=["self", "max"] #How to treat source values
names=["exac_af", "exac_af_nfe_max"] #names used in the annotated file

[[annotation]]
file="regions_score.bed.gz"
columns = [4, 5] #When using a BED or TSV files you can refer to values by col index
names=["regions_ids", "score_max"]
ops=["uniq","max"]

Resources

To perform annotations GREEN-VARAN Nextflow workflow requires a series of supporting files.
By default, various resources are expected in the resources folder within the main tool folder.
You pass an alternative resource folder using --resource_folder option, bug the same structure is expected in this folder

The expected folder structure is as follows

.
|-- SQlite
| `-- GREEN-DB_v2.5.db
|-- GRCh37
| `-- BED / TSV files used for GRCh37 genome build
`-- GRCh38
 `-- BED / TSV files used for GRCh38 genome build

Use the --list_data option to see the full list of available resources and the expected path for each one.

Automated download

A supporting workflow is provided to automate data download for all resources included in the GREEN-DB collection.
You can list the available resources and their resulting download location using

nextflow workflow/download.nf --list_data

The reccomended set of annotations can be downloaded to the default location using the following command or
you can set an alternative resource folder using --resource_folder option

nextflow workflow/download.nf \
-profile local \
--scores best \
--regions best \
--AF \
--db

Otherwise, single files are available for download from Zenodo repository and all file locations are listed in
the GREENDB_collection.txt file under resources folder.

Workflow configuration

The workflow has pre-configured profiles for most popular schedulers (sge, lsf, slurm) and also a local profile (local).
These profiles determine how many download jobs can be submitted concurrently and the number of threads used for annotation.

You can activate the desired profile using -profile argument when launching the workflow

NB. You need to update the queue name parameter to reflect your local settings, see how to edit the config below

The default settings for each profile are reported below:

Editing the profile configuration

To adjust the configuration you need to edit the nextflow.config file in the workflow folder

The main parameters you may need to adjust are
- ncpus: this controls the number of threads request for annotation
- max_local_jobs: this controls the max number of concurrent jobs submitted in local profile (when not submitting job to a scheduler)
- queue: this is the name of the queue to be used when submitting jobs

Editing the annotation file schema

The annotation file schema contain the expected files names, repositories and annotation sources.
In case you need to adjust this you can modify the resources.conf file located in workflow/config in the GREEN-VARAN folder.

Available parameters for main workflow

	--input INPUT_VCF

	
Input VCF file(s), compressed and indexed

You can input multiple files from a folder using quotes like --input mypath/*.vcf.gz

	--build GENOME_BUILD

	
Genome build

Accepted values: [GRCh37, GRCh38]

	--out output_dir

	
Output directory

	--scores SCORE_NAME

	
Annotate prediction scores

Accepted values: [best, all, name]

best: annotate ncER, FATHMM-MKL, ReMM

all: annotate all scores

name: annotate only the specified score(s) (can be comma-separated list)

	--regions REGIONS_NAME

	
Annotate functional regions

Accepted values: [best, all, name]

best: annotate TFBS, DNase, UCNE

all: annotate all regions

name: annotate only the specified region(s) (can be comma-separated list)

	--AF

	
Annotate global AF from gnomAD genomes

	--greenvaran_config JSON_FILE

	
A json config file for GREEN-VARAN tool

	--greenvaran_dbschema JSON_FILE

	
A json db schema file for GREEN-VARAN tool

	--nochr

	
Chromosome names in the input file do not have chr prefix

	--prioritization_strategy

	
Set prioritization strategy [levels, pileup]

	--resource_folder

	
Specify a custom folder for the annotation files

Default is the resources folder in GREEN-VARAN main folder

	--anno_tom TOML_FILE

	
A custom toml annotation config file.

This file is a toml file as specified by vcfanno tool

This will be added to other annotations defined with scores, regions and AF.

	--list_data

	
Output the list of available scores / regions and the expected paths

Download resources

greenvaran tool

The greenvaran annotation tool only need the GREEN-DB BED file and index for your genome build available from
https://zenodo.org/record/5636209

greendb_query tool

The greendb query tool only need the GREEN-DB SQlite file (.db.gz) available from https://zenodo.org/record/5636209
Remember to decompress this before use

GREEN-VARAN workflow

To perform annotations GREEN-VARAN Nextflow workflow requires a series of supporting files.
By default, various resources are expected in the resources folder within the main tool folder.
If you pass an alternative resource folder using --resource_folder option, the same structure is expected in this folder
The expected folder structure is as follows and the expected file names are those listed in the Zenodo repository table below

.
|-- SQlite
| `-- GREEN-DB_v2.5.db
|-- GRCh37
| `-- BED / TSV files used for GRCh37 genome build
`-- GRCh38
 `-- BED / TSV files used for GRCh38 genome build

When you clone the GREEN-VARAN repository you can use the Nextflow workflow workflow/download.nf to download files and prepare the resource folder.
Use the --list_data option to see the full list of available resource and the expected path for each one.

Otherwise, single files are available for download from Zenodo repository

	Annotation

	Category

	File

	GRCh37_CADD

	scores

	https://zenodo.org/record/3956385/files/GRCh37_CADD.tsv.gz

	GRCh37_CADD

	scores

	https://zenodo.org/record/3956385/files/GRCh37_CADD.tsv.gz.csi

	GRCh37_DANN

	scores

	https://zenodo.org/record/3957486/files/GRCh37_DANN.tsv.gz

	GRCh37_DANN

	scores

	https://zenodo.org/record/3957486/files/GRCh37_DANN.tsv.gz.csi

	GRCh37_ExPECTO

	scores

	https://zenodo.org/record/3956168/files/GRCh37_ExPECTO.tsv.gz

	GRCh37_ExPECTO

	scores

	https://zenodo.org/record/3956168/files/GRCh37_ExPECTO.tsv.gz.csi

	GRCh37_FIRE

	scores

	https://zenodo.org/record/3957356/files/GRCh37_FIRE.tsv.gz

	GRCh37_FIRE

	scores

	https://zenodo.org/record/3957356/files/GRCh37_FIRE.tsv.gz.csi

	GRCh37_LinSight

	scores

	https://zenodo.org/record/3956168/files/GRCh37_LinSight.bed.gz

	GRCh37_LinSight

	scores

	https://zenodo.org/record/3956168/files/GRCh37_LinSight.bed.gz.csi

	GRCh37_NCBoost

	scores

	https://zenodo.org/record/3956168/files/GRCh37_NCBoost.tsv.gz

	GRCh37_NCBoost

	scores

	https://zenodo.org/record/3956168/files/GRCh37_NCBoost.tsv.gz.csi

	GRCh37_ReMM

	scores

	https://zenodo.org/record/3956168/files/GRCh37_ReMM.tsv.gz

	GRCh37_ReMM

	scores

	https://zenodo.org/record/3956168/files/GRCh37_ReMM.tsv.gz.csi

	GRCh37_PhyloP100

	scores

	https://zenodo.org/record/3973181/files/GRCh37_PhyloP100.bed.gz

	GRCh37_PhyloP100

	scores

	https://zenodo.org/record/3973181/files/GRCh37_PhyloP100.bed.gz.csi

	GRCh37_Eigen

	scores

	https://zenodo.org/record/3982095/files/GRCh37_Eigen.tsv.gz

	GRCh37_Eigen

	scores

	https://zenodo.org/record/3982095/files/GRCh37_Eigen.tsv.gz.csi

	GRCh37_FATHMM_XF

	scores

	https://zenodo.org/record/3982392/files/GRCh37_FATHMM-XF_NC.tsv.gz

	GRCh37_FATHMM_XF

	scores

	https://zenodo.org/record/3982392/files/GRCh37_FATHMM-XF_NC.tsv.gz.csi

	GRCh37_FATHMM_MKL

	scores

	https://zenodo.org/record/3981113/files/GRCh37_FATHMM-MKL_NC.tsv.gz

	GRCh37_FATHMM_MKL

	scores

	https://zenodo.org/record/3981113/files/GRCh37_FATHMM-MKL_NC.tsv.gz.csi

	GRCh37_GWAVA

	scores

	https://zenodo.org/record/3956168/files/GRCh37_gwava.bed.gz

	GRCh37_GWAVA

	scores

	https://zenodo.org/record/3956168/files/GRCh37_gwava.bed.gz.csi

	GRCh37_gnomAD

	AF

	https://zenodo.org/record/3957637/files/GRCh37_gnomad.genomes.vcf.gz

	GRCh37_gnomAD

	AF

	https://zenodo.org/record/3957637/files/GRCh37_gnomad.genomes.vcf.gz.csi

	GRCh37_ncER

	scores

	https://zenodo.org/record/5636163/files/GRCh37_ncER_perc.bed.gz

	GRCh37_ncER

	scores

	https://zenodo.org/record/5636163/files/GRCh37_ncER_perc.bed.gz.csi

	GRCh38_CADD

	scores

	https://zenodo.org/record/3956227/files/GRCh38_CADD.tsv.gz

	GRCh38_CADD

	scores

	https://zenodo.org/record/3956227/files/GRCh38_CADD.tsv.gz.csi

	GRCh38_DANN

	scores

	https://zenodo.org/record/3957428/files/GRCh38_DANN.tsv.gz

	GRCh38_DANN

	scores

	https://zenodo.org/record/3957428/files/GRCh38_DANN.tsv.gz.csi

	GRCh38_ExPECTO

	scores

	https://zenodo.org/record/3955933/files/GRCh38_ExPECTO.tsv.gz

	GRCh38_ExPECTO

	scores

	https://zenodo.org/record/3955933/files/GRCh38_ExPECTO.tsv.gz.csi

	GRCh38_FIRE

	scores

	https://zenodo.org/record/3957216/files/GRCh38_FIRE.tsv.gz

	GRCh38_FIRE

	scores

	https://zenodo.org/record/3957216/files/GRCh38_FIRE.tsv.gz.csi

	GRCh38_LinSight

	scores

	https://zenodo.org/record/3955933/files/GRCh38_LinSight.bed.gz

	GRCh38_LinSight

	scores

	https://zenodo.org/record/3955933/files/GRCh38_LinSight.bed.gz.csi

	GRCh38_NCBoost

	scores

	https://zenodo.org/record/3955933/files/GRCh38_NCBoost.tsv.gz

	GRCh38_NCBoost

	scores

	https://zenodo.org/record/3955933/files/GRCh38_NCBoost.tsv.gz.csi

	GRCh38_ReMM

	scores

	https://zenodo.org/record/3955933/files/GRCh38_ReMM.tsv.gz

	GRCh38_ReMM

	scores

	https://zenodo.org/record/3955933/files/GRCh38_ReMM.tsv.gz.csi

	GRCh38_PhyloP100

	scores

	https://zenodo.org/record/3973181/files/GRCh38_PhyloP100.bed.gz

	GRCh38_PhyloP100

	scores

	https://zenodo.org/record/3973181/files/GRCh38_PhyloP100.bed.gz.csi

	GRCh38_Eigen

	scores

	https://zenodo.org/record/3982182/files/GRCh38_Eigen.tsv.gz

	GRCh38_Eigen

	scores

	https://zenodo.org/record/3982182/files/GRCh38_Eigen.tsv.gz.csi

	GRCh38_FATHMM_XF

	scores

	https://zenodo.org/record/3982484/files/GRCh38_FATHMM-XF_NC.tsv.gz

	GRCh38_FATHMM_XF

	scores

	https://zenodo.org/record/3982484/files/GRCh38_FATHMM-XF_NC.tsv.gz.csi

	GRCh38_FATHMM_MKL

	scores

	https://zenodo.org/record/3981121/files/GRCh38_FATHMM-MKL_NC.tsv.gz

	GRCh38_FATHMM_MKL

	scores

	https://zenodo.org/record/3981121/files/GRCh38_FATHMM-MKL_NC.tsv.gz.csi

	GRCh38_GWAVA

	scores

	https://zenodo.org/record/3955933/files/GRCh38_gwava.bed.gz

	GRCh38_GWAVA

	scores

	https://zenodo.org/record/3955933/files/GRCh38_gwava.bed.gz.csi

	GRCh38_ncER

	scores

	https://zenodo.org/record/5636163/files/GRCh38_ncER_perc.bed.gz

	GRCh38_ncER

	scores

	https://zenodo.org/record/5636163/files/GRCh38_ncER_perc.bed.gz.csi

	GRCh37_TFBS

	regions

	https://zenodo.org/record/5705936/files/GRCh37_TFBS.merged.bed.gz

	GRCh37_TFBS

	regions

	https://zenodo.org/record/5705936/files/GRCh37_TFBS.merged.bed.gz.csi

	GRCh37_DNase

	regions

	https://zenodo.org/record/5705936/files/GRCh37_DNase.merged.bed.gz

	GRCh37_DNase

	regions

	https://zenodo.org/record/5705936/files/GRCh37_DNase.merged.bed.gz.csi

	GRCh37_UCNE

	regions

	https://zenodo.org/record/5705936/files/GRCh37_UCNE.bed.gz

	GRCh37_UCNE

	regions

	https://zenodo.org/record/5705936/files/GRCh37_UCNE.bed.gz.csi

	GRCh37_dbSuper

	regions

	https://zenodo.org/record/5705936/files/GRCh37_dbSuper.bed.gz

	GRCh37_dbSuper

	regions

	https://zenodo.org/record/5705936/files/GGRCh37_dbSuper.bed.gz.csi

	GRCh37_TAD

	regions

	https://zenodo.org/record/5705936/files/GRCh37_TAD.bed.gz

	GRCh37_TAD

	regions

	https://zenodo.org/record/5705936/files/GRCh37_TAD.bed.gz.csi

	GRCh38_TFBS

	regions

	https://zenodo.org/record/5705936/files/GRCh38_TFBS.merged.bed.gz

	GRCh38_TFBS

	regions

	https://zenodo.org/record/5705936/files/GRCh38_TFBS.merged.bed.gz.csi

	GRCh38_DNase

	regions

	https://zenodo.org/record/5705936/files/GRCh38_DNase.merged.bed.gz

	GRCh38_DNase

	regions

	https://zenodo.org/record/5705936/files/GRCh38_DNase.merged.bed.gz.csi

	GRCh38_UCNE

	regions

	https://zenodo.org/record/5705936/files/GRCh38_UCNE.bed.gz

	GRCh38_UCNE

	regions

	https://zenodo.org/record/5705936/files/GRCh38_UCNE.bed.gz.csi

	GRCh38_dbSuper

	regions

	https://zenodo.org/record/5705936/files/GRCh38_dbSuper.bed.gz

	GRCh38_dbSuper

	regions

	https://zenodo.org/record/5705936/files/GRCh38_dbSuper.bed.gz.csi

	GRCh38_TAD

	regions

	https://zenodo.org/record/5705936/files/GRCh38_TAD.bed.gz

	GRCh38_TAD

	regions

	https://zenodo.org/record/5705936/files/GRCh38_TAD.bed.gz.csi

	GRCh38_gnomAD

	AF

	https://zenodo.org/record/3957637/files/GRCh38_gnomad.genomes.vcf.gz

	GRCh38_gnomAD

	AF

	https://zenodo.org/record/3957637/files/GRCh38_gnomad.genomes.vcf.gz.csi

	SV_annotations

	SV_annotations

	https://zenodo.org/record/3970785/files/SV_annotations.tar.gz

	GRCh37_GREENDB_bed

	GREENDB_bed

	https://zenodo.org/record/5636209/files/GRCh37_GREEN-DB.bed.gz

	GRCh37_GREENDB_bed

	GREENDB_bed

	https://zenodo.org/record/5636209/files/GRCh37_GREEN-DB.bed.gz.csi

	GRCh38_GREENDB_bed

	GREENDB_bed

	https://zenodo.org/record/5636209/files/GRCh38_GREEN-DB.bed.gz

	GRCh38_GREENDB_bed

	GREENDB_bed

	https://zenodo.org/record/5636209/files/GRCh38_GREEN-DB.bed.gz.csi

	GREENDB_sqlite

	GREENDB_sqlite

	https://zenodo.org/record/5636209/files/GREEN-DB_v2.5.db.gz

How to cite

GREEN-DB

If you use any information from GREEN-DB please cite:
GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants in whole-genome sequencing [https://www.biorxiv.org/content/10.1101/2020.09.17.301960v1]
Giacopuzzi E., Popitsch N., Taylor JC. BiorXiv (2020)

GREEN-VARAN

When you use greenvaran for annotation please cite

GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants in whole-genome sequencing [https://www.biorxiv.org/content/10.1101/2020.09.17.301960v1]

Giacopuzzi E., Popitsch N., Taylor JC. BiorXiv (2021)

If you use the GREEN-VARAN Nextflow workflow for additional annotations also cite

Vcfanno: fast, flexible annotation of genetic variants [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0973-5]

Brent S. Pedersen, Ryan M. Layer & Aaron R. Quinlan. Genome Biology volume 17, Article number: 118 (2016)

If you include annotation with a prediction score please also cite the corresponding paper

	Score

	PUBMED ID

	CADD

	30371827

	DANN

	25338716

	EIGEN

	26727659

	ExPecto

	30013180

	FATHMM-MKL

	25583119

	FATHMM-XF

	28968714

	FINSURF

	doi.org/10.1101/2021.05.03.442347

	FIRE

	28961785

	GenoCanyon

	26015273

	GenoSkyline-plus

	27058395

	GWAVA

	24487584

	LinSight

	28288115

	NCBoost

	30744685

	ncER

	31748530

	ReMM

	27569544

Population AF

If you use population AF annotation with GREEN-VARAN workflow also cite the gnomAD paper:
The mutational constraint spectrum quantified from variation in 141,456 humans [https://www.nature.com/articles/s41586-020-2308-7]

Index

SV_annotation tool usage

SV_annotation.py allows annotation of structural variants VCF based on overlap with known regions in external bed files.
Overlap threshold is configurable and the resources provided with GREEN-VARAN allow annotation of population AF
from gnomAD and 1000G, overlapping genes and GREEN-DB information

SV_annotation.py [-h] -i INPUTVCF
 -o OUT [-t TMPDIR] -b {GRCh37,GRCh38}
 -c CONFIG [-k] [--logfile LOGFILE]

How it works

SV annotation requires a standard VCF as input and output an uncompressed VCF with annotations.
Annotation files, overlap thresholds and other parameters can be configured modifying the configuration json file.
The input VCF must contain the following information:

	a unique variant ID in ID column

	
	SVTYPE and END fields in the INFO column.

	
SVTYPE must follow the standard types definition: DEL, DUP, INS, INV, BND

The exact name of the INFO fields containing SVTYPE and END informations can be configured in the config file

The standard settings will work directly on the output of popular SV caller like Lumpy, Manta and CANVAS

Deletions, duplications and inversion
SV_annotation annotate deletions, duplications and inversion by overlap with the set of known intervals provided in configuration.
The tool uses different overlap strategies for the different type of dataset provided in the configuration file (see the configuration section).
Considering a structural variants (A), an annotation region (B) and a given overlap threshold (T):

	
	AF datasets

	region A is annotated with AF from region B only if at least T fraction of A is overlapped by B

	
	custom datasets

	region A is annotated with information from region B only if at least T fraction of B is overlapped by A

	
	genes datasets

	work same as custom datasets

Insertions
Since the exact nature of an insertion is difficult to be determined, the tool will only try to annotate the break point where the insertion occurred.
Given that this is a single base position, it may be difficult that it overlaps exactly across different dataset.
As results, most insertions do not get an AF annotation, while you get information on which regions from custom dataset and genes are interrupted by the insertion

BND
Generic break-point, usually defined as BND in the VCF are not annotated.

Output annotations fields

Based on the dataset name and field names provided in the configuration file, the tool will add a single field
like DATASET_FIELDNAME=value for each configured annotation.

The configuration file

A default configuration fils (SV_annotation.json) is provided in the GREEN-VARAN repository.
The configuration file is a standard json file oragnized as follows:

{
 "BEDTOOLS": "bedtools",
 "SVTYPE": "SVTYPE",
 "END": "END",
 "RES_DIR": "resources/SV_annotations",

 "overlap": {
 "AF_datasets": ["0.75", "FALSE"],
 "custom_datasets": ["0.10", "FALSE"],
 "genes": ["10e-9","FALSE"]
 },

 "AF_datasets": {
 "genome_build": {
 "Dataset1": [
 ["INS", "INS_file.bed", "5", "AF", "Float"],
 ["DEL", "DEL_file.bed", "5", "AF", "Float"],
 ["DUP", "DUP_file.bed", "5", "AF", "Float"],
 ["INV", "INV_file.bed", "5", "AF", "Float"]
]
 }
 },
 "custom_datasets": {
 "genome_build": {
 "Dataset1": [
 ["INS", "INS_file.bed", "5", "AF", "Float"],
 ["DEL", "DEL_file.bed", "5", "AF", "Float"],
 ["DUP", "DUP_file.bed", "5", "AF", "Float"],
 ["INV", "INV_file.bed", "5", "AF", "Float"]
]
 }
 },
 "genes": {
 "genome_build": {
 "gene": [
 ["INS", "INS_file.bed", "5", "AF", "Float"],
 ["DEL", "DEL_file.bed", "5", "AF", "Float"],
 ["DUP", "DUP_file.bed", "5", "AF", "Float"],
 ["INV", "INV_file.bed", "5", "AF", "Float"]
],
 "CDS": [
 ["INS", "INS_file.bed", "5", "AF", "Float"],
 ["DEL", "DEL_file.bed", "5", "AF", "Float"],
 ["DUP", "DUP_file.bed", "5", "AF", "Float"],
 ["INV", "INV_file.bed", "5", "AF", "Float"]
]
 }
 }
}

Header

{
 "BEDTOOLS": "bedtools",
 "SVTYPE": "SVTYPE",
 "END": "END",
 "RES_DIR": "resources/SV_annotations",

These tags at the beginning of the file defines the location of bedtools executable and the
exact INFO field names for SVTYPE and END. RES_DIR defines the folder containing the annotation files provided
in the subsequent section. This folder is added before the file names and can be left empty when each file
is provided in a different location.

Overlap

"overlap": {
 "AF_datasets": ["0.75", "FALSE"],
 "custom_datasets": ["0.10", "FALSE"],
 "genes": ["10e-9","FALSE"]
},

The overlap block defines the thresholds for each of the files types.
Only the three annotation types defined above are accepted. The first value define the fraction of overlap
and the second value can be TRUE or FALSE and set if overlap must be reciprocal.

Datasets

"dataset_type": {
 "genome_build": {
 "Dataset1": [
 ["INS", "INS_file.bed", "5", "AF", "Float"],
 ["DEL", "DEL_file.bed", "5", "AF", "Float"],
 ["DUP", "DUP_file.bed", "5", "AF", "Float"],
 ["INV", "INV_file.bed", "5", "AF", "Float"]
]
 }
}

For each accepted dataset type (AF_datasets, custom_datasets, genes) you can define a set of data sources
for each genome build (like GRCh37, GRCh38). Within the genome_build block you define a dataset name which must
contain 4 files definition, one for each variant type (INS, DEL, DUP, INV).
Each data source contains the following setting:

	
	variant type

	Must be one of INS, DEL, DUP, INV

	
	annotation bed file location

	BED like files must be provided as input. First 3 columns are chrom,start,end

	
	comma-separated list of column numbers from which extract annotations

	For example to get values from column 4 and 5 use "4,5"

	
	comma-separated list of field names to be used in INFO field

	The final field generated in the INFO output will be equal to dataset_fieldname

	
	data type of annotation according to VCF standard (String, Integer, Float)

	single value expected, use String if you want to extract mixed values

Arguments list

Mandatory Arguments

	-h, --help

	
Shows help message and exit

	-i INPUTVCF, --inputvcf INPUTVCF

	
Input vcf[.gz] file

	-o OUT, --out OUT

	
VCF output file (at the moment only support plain VCF output)

	-b BUILD, --build BUILD

	
Possible values: {GRCh37,GRCh38}

Specify the genome build of input VCF

	-c CONFIG_FILE, --config CONFIG_FILE

	
Configuration file (json)

Additional Arguments

	-t TMPDIR, --tmpdir TMPDIR

	
Location of temporaty folder to store temp files

By default a tmp folder will be created in the working directory

	-k, --keeptmp

	
Set to keep temporary files

	--logfile LOGFILE

	
Specify alternative location for the log file

 _images/Figure3.png
Fraction of group genes

Fraction of group genes

gnomAD oe_lof

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

o

o

clinvar [NO M YES

Constraint

_images/GREEN-DB_diagram.png
For each additional dataset (UCNE, dbSuper, TFBS, DNase, LoF tolerance)

GREEN-DB

_images/Figure1.png
category M curated_db M experimental Ml computational

1600 {15ag

16405 1200
16403
terot I I I

Count (log scale)
M bases

® S o&@ S ST
SO < SPNSN SgRs WL S
& WL FFIFF "
& & & O
Qé\% PN <fc;

Genomic region

Count (log scale)

E
1
0405 g 0

3
1e+03 g o2

5

® 01
1e+01

0.0

Standard type Standard type Associated information

_images/Figure2.png
% regions

distance bp (log scale)

09
08
07
06 gene connection 2 relative position
2
o W cosestgene (100) B B DOWNSTREAM
04 W direct connection o B STREAME
03 B -
region type region type
D Closest genes Overlapping genes
1e+08 i & $ 1.00
0.75 Among
1e+05 2 2 controlled
8 8 genes
2050 S
3 e
= ®
16402 025
i
. 3
. . 0.00
S ¢ ¢
& & 5
& & &
Ad & €

region type region type region type

_static/comment-bright.png

_images/NC_annotations.png
Curated data-sets of regulatory regions
EPDS, VISTA, FOCS, HACER,

RefSeq Functional elements, Ensembl regulatory build

Enhancer-gene screenings
Exeperimentally validated enhancer - gene interactions:
Hi-C, CRISPR-interference, CRISPR-perturb

Computational predictions
SegWey, ENCODE-HMM state, DECRES

Large consortium datasets
FANTOMS promoters / enhancers,
ENCODE CREs, ENCODE TFBS / DNase
eQTLs data

significant eQTLs from GTeX v8

Additional data

Ultra-conserved non-coding elements (UCNE),
SUPER-enhancer database (dbSUPER),
enhancer LoF tolerance (from CNV data)

TAD domains

TAD domain in 10 cell lines based on 4-
detection methods from TADKB

Filter active states from
computational predictions

Concatenate all
regulatory regions in a £

normalized table

Remove outliers regions

by size and number of R L.
associated genes. Non-coding prediction scores

Performance comparison across 18
available scores

Collapse regions of
the same type

overlapping >= 50%

Update associated
genes using GTeX data

Convert to official gene
symbol, annotate
closest gene and TAD

liftOver to GRCh38

GREEN-VARAN
Annotation and prioritization
of regulatory variants in VCF files

Genes Functional
elements

Regions

Methods TADs

GRCh37
GRCh38

Tissues

GREEN-DB
Annotated collection of ~2.4M regulatory
regions available as SQlite and BED format

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 GREEN: Genomic Regulatory Elements ENcyclopedia

 		
 The GREEN-DB

 		
 Database region content

 		
 GRCh38

 		
 GRCh37

 		
 Summary statistics on the database

 		
 SQLite database structure

 		
 The constraint metric

 		
 Summary of the building process

 		
 Extract database tables

 		
 Using bash

 		
 Using R

 		
 GREEN-VARAN tool set

 		
 Installation

 		
 1. Get the tool binary from the repository

 		
 2. Compile the tool

 		
 Get GREEN-DB files

 		
 GREEN-VARAN Nextflow workflow

 		
 Singularity

 		
 Bind specific folders for resources or data

 		
 Single tools usage

 		
 GREEN-VARAN tool usage

 		
 greendb_query tool usage

 		
 GREEN-VARAN workflow

 		
 GREEN-VARAN workflow

 		
 Usage

 		
 Add additional custom annotations

 		
 Resources

 		
 Automated download

 		
 Workflow configuration

 		
 Editing the profile configuration

 		
 Editing the annotation file schema

 		
 Available parameters for main workflow

 		
 Download resources

 		
 greenvaran tool

 		
 greendb_query tool

 		
 GREEN-VARAN workflow

 		
 How to cite

 		
 GREEN-DB

 		
 GREEN-VARAN

 		
 Population AF

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

